If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5n^2-2n-997=0
a = 5; b = -2; c = -997;
Δ = b2-4ac
Δ = -22-4·5·(-997)
Δ = 19944
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{19944}=\sqrt{36*554}=\sqrt{36}*\sqrt{554}=6\sqrt{554}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-6\sqrt{554}}{2*5}=\frac{2-6\sqrt{554}}{10} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+6\sqrt{554}}{2*5}=\frac{2+6\sqrt{554}}{10} $
| 7(5x-4)-1=-2(-7+4x) | | -x^2+1=5x^2+4 | | -8(u-3)=6u+30 | | -2(x+5)=-4(x-1 | | 10=4+–2y | | 4|4-8x|=20 | | 9x+11=5x-33 | | 3(v-2)+5=2v(3v-5) | | 6(x-3)=5x-(2x+18) | | 3(v-2)+5=2v(3v-5$ | | 6p-6=(16p-21) | | -3y+8=4 | | 8w+8=4w+36 | | -2(5p-3)=46 | | 4(n+10)=12(n-8) | | 8+4n=-2+7n-2n | | 3x2/4=0 | | 2u+4-2(-4u-2)=2(u-1) | | 15m-14m=12 | | 2(-3x-10)=-2x+4(1-3x) | | -4(w+1)+6w=2(w+2) | | -25k=150 | | 12–15x=-2–15x | | x^-2=1.4 | | 1,200+45=1,800+60h | | 47=4x+19 | | x/3+17=25 | | 12c-2c+3=13 | | 5x-5+2(2x+1)=-5(x+2) | | -8x+4(1+5x)=-2(3x+7) | | 4r+7=-9 | | 5/4x—1=1+5/4x |